Robust Visual Robot Localization Across Seasons Using Network Flows

Author:

Naseer Tayyab,Spinello Luciano,Burgard Wolfram,Stachniss Cyrill

Abstract

Image-based localization is an important problem in robotics and an integral part of visual mapping and navigation systems. An approach to robustly match images to previously recorded ones must be able to cope with seasonal changes especially when it is supposed to work reliably over long periods of time. In this paper, we present a novel approach to visual localization of mobile robots in outdoor environments, which is able to deal with substantial seasonal changes. We formulate image matching as a minimum cost flow problem in a data association graph to effectively exploit sequence information. This allows us to deal with non-matching image sequences that result from temporal occlusions or from visiting new places. We present extensive experimental evaluations under substantial seasonal changes. Our approach achieves accurate matching across seasons and outperforms existing state-of-the-art methods such as FABMAP2 and SeqSLAM.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Addressing the challenges of loop detection in agricultural environments;Journal of Field Robotics;2024-08-12

2. Spatial Gating with Hybrid Receptive Field for Robot Visual Localization;International Journal of Computational Intelligence Systems;2024-05-27

3. Aggregating Multiple Bio-Inspired Image Region Classifiers for Effective and Lightweight Visual Place Recognition;IEEE Robotics and Automation Letters;2024-04

4. Learning Sequence Descriptor Based on Spatio-Temporal Attention for Visual Place Recognition;IEEE Robotics and Automation Letters;2024-03

5. A Complementarity-Based Switch-Fuse System for Improved Visual Place Recognition;2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3