Regularizing Graph Neural Networks via Consistency-Diversity Graph Augmentations

Author:

Bo Deyu,Hu Binbin,Wang Xiao,Zhang Zhiqiang,Shi Chuan,Zhou Jun

Abstract

Despite the remarkable performance of graph neural networks (GNNs) in semi-supervised learning, it is criticized for not making full use of unlabeled data and suffering from over-fitting. Recently, graph data augmentation, used to improve both accuracy and generalization of GNNs, has received considerable attentions. However, one fundamental question is how to evaluate the quality of graph augmentations in principle? In this paper, we propose two metrics, Consistency and Diversity, from the aspects of augmentation correctness and generalization. Moreover, we discover that existing augmentations fall into a dilemma between these two metrics. Can we find a graph augmentation satisfying both consistency and diversity? A well-informed answer can help us understand the mechanism behind graph augmentation and improve the performance of GNNs. To tackle this challenge, we analyze two representative semi-supervised learning algorithms: label propagation (LP) and consistency regularization (CR). We find that LP utilizes the prior knowledge of graphs to improve consistency and CR adopts variable augmentations to promote diversity. Based on this discovery, we treat neighbors as augmentations to capture the prior knowledge embodying homophily assumption, which promises a high consistency of augmentations. To further promote diversity, we randomly replace the immediate neighbors of each node with its remote neighbors. After that, a neighbor-constrained regularization is proposed to enforce the predictions of the augmented neighbors to be consistent with each other. Extensive experiments on five real-world graphs validate the superiority of our method in improving the accuracy and generalization of GNNs.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-strategy adaptive data augmentation for Graph Neural Networks;Expert Systems with Applications;2024-12

2. GMMDA: Gaussian mixture modeling of graph in latent space for graph data augmentation;Knowledge and Information Systems;2024-08-29

3. TSC: A Simple Two-Sided Constraint against Over-Smoothing;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

4. Topology-monitorable Contrastive Learning on Dynamic Graphs;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

5. A graph residual generation network for node classification based on multi-information aggregation;Discover Computing;2024-08-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3