GMMDA: Gaussian mixture modeling of graph in latent space for graph data augmentation

Author:

Li Yanjin,Xu Linchuan,Yamanishi Kenji

Abstract

AbstractGraph data augmentation (GDA), which manipulates graph structure and/or attributes, has been demonstrated as an effective method for improving the generalization of graph neural networks on semi-supervised node classification. As a data augmentation technique, label preservation is critical, that is, node labels should not change after data manipulation. However, most existing methods overlook the label preservation requirements. Determining the label-preserving nature of a GDA method is highly challenging, owing to the non-Euclidean nature of the graph structure. In this study, for the first time, we formulate a label-preserving problem (LPP) in the context of GDA. The LPP is formulated as an optimization problem in which, given a fixed augmentation budget, the objective is to find an augmented graph with minimal difference in data distribution compared to the original graph. To solve the LPP problem, we propose GMMDA, a generative data augmentation (DA) method based on Gaussian mixture modeling (GMM) of a graph in a latent space. We designed a novel learning objective that jointly learns a low-dimensional graph representation and estimates the GMM. The learning is followed by sampling from the GMM, and the samples are converted back to the graph as additional nodes. To uphold label preservation, we designed a minimum description length (MDL)-based method to select a set of samples that produces the minimum shift in the data distribution captured by the GMM. Through experiments, we demonstrate that GMMDA can improve the performance of graph convolutional network on Cora, Citeseer and Pubmed by as much as $$7.75\%$$ 7.75 % , $$8.75\%$$ 8.75 % and $$5.87\%$$ 5.87 % , respectively, significantly outperforming the state-of-the-art methods.

Funder

Japan Science and Technology Agency

The University of Tokyo

Publisher

Springer Science and Business Media LLC

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3