PrEF: Probabilistic Electricity Forecasting via Copula-Augmented State Space Model

Author:

Wang Zhiyuan,Xu Xovee,Trajcevski Goce,Zhang Kunpeng,Zhong Ting,Zhou Fan

Abstract

Electricity forecasting has important implications for the key decisions in modern electricity systems, ranging from power generation, transmission, distribution and so on. In the literature, traditional statistic approaches, machine-learning methods and deep learning (e.g., recurrent neural network) based models are utilized to model the trends and patterns in electricity time-series data. However, they are restricted either by their deterministic forms or by independence in probabilistic assumptions -- thereby neglecting the uncertainty or significant correlations between distributions of electricity data. Ignoring these, in turn, may yield error accumulation, especially when relying on historical data and aiming at multi-step prediction. To overcome these, we propose a novel method named Probabilistic Electricity Forecasting (PrEF) by proposing a non-linear neural state space model (SSM) and incorporating copula-augmented mechanism into that, which can learn uncertainty-dependencies knowledge and understand interactive relationships between various factors from large-scale electricity time-series data. Our method distinguishes itself from existing models by its traceable inference procedure and its capability of providing high-quality probabilistic distribution predictions. Extensive experiments on two real-world electricity datasets demonstrate that our method consistently outperforms the alternatives.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spatial modeling under small sample sizes in unconventional sweet-spots mapping using spatial copula;Modeling Earth Systems and Environment;2024-06-28

2. Classified Forecasting of Electricity Purchased by Agent Based on Risk Transfer Chains;2023 International Conference on Power System Technology (PowerCon);2023-09-21

3. DBAugur: An Adversarial-based Trend Forecasting System for Diversified Workloads;2023 IEEE 39th International Conference on Data Engineering (ICDE);2023-04

4. Tropical Cyclone Intensity Probabilistic Forecasting System Based on Deep Learning;International Journal of Intelligent Systems;2023-03-18

5. Probabilistic Electricity Demand Forecasting with Transformer-Guided State Space Model;2022 IEEE 5th International Conference on Automation, Electronics and Electrical Engineering (AUTEEE);2022-11-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3