Author:
Wang Zhiyuan,Xu Xovee,Trajcevski Goce,Zhang Kunpeng,Zhong Ting,Zhou Fan
Abstract
Electricity forecasting has important implications for the key decisions in modern electricity systems, ranging from power generation, transmission, distribution and so on. In the literature, traditional statistic approaches, machine-learning methods and deep learning (e.g., recurrent neural network) based models are utilized to model the trends and patterns in electricity time-series data. However, they are restricted either by their deterministic forms or by independence in probabilistic assumptions -- thereby neglecting the uncertainty or significant correlations between distributions of electricity data. Ignoring these, in turn, may yield error accumulation, especially when relying on historical data and aiming at multi-step prediction. To overcome these, we propose a novel method named Probabilistic Electricity Forecasting (PrEF) by proposing a non-linear neural state space model (SSM) and incorporating copula-augmented mechanism into that, which can learn uncertainty-dependencies knowledge and understand interactive relationships between various factors from large-scale electricity time-series data. Our method distinguishes itself from existing models by its traceable inference procedure and its capability of providing high-quality probabilistic distribution predictions. Extensive experiments on two real-world electricity datasets demonstrate that our method consistently outperforms the alternatives.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献