Enhanced Story Comprehension for Large Language Models through Dynamic Document-Based Knowledge Graphs

Author:

Andrus Berkeley R,Nasiri Yeganeh,Cui Shilong,Cullen Benjamin,Fulda Nancy

Abstract

Large transformer-based language models have achieved incredible success at various tasks which require narrative comprehension, including story completion, answering questions about stories, and generating stories ex nihilo. However, due to the limitations of finite context windows, these language models struggle to produce or understand stories longer than several thousand tokens. In order to mitigate the document length limitations that come with finite context windows, we introduce a novel architecture that augments story processing with an external dynamic knowledge graph. In contrast to static commonsense knowledge graphs which hold information about the real world, these dynamic knowledge graphs reflect facts extracted from the story being processed. Our architecture uses these knowledge graphs to create information-rich prompts which better facilitate story comprehension than prompts composed only of story text. We apply our architecture to the tasks of question answering and story completion. To complement this line of research, we introduce two long-form question answering tasks, LF-SQuAD and LF-QUOREF, in which the document length exceeds the size of the language model's context window, and introduce a story completion evaluation method that bypasses the stochastic nature of language model generation. We demonstrate broad improvement over typical prompt formulation methods for both question answering and story completion using GPT-2, GPT-3 and XLNet.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Give us the Facts: Enhancing Large Language Models With Knowledge Graphs for Fact-Aware Language Modeling;IEEE Transactions on Knowledge and Data Engineering;2024-07

2. Attention-Based Two-Dimensional Dynamic-Scale Graph Autoencoder for Batch Process Monitoring;Processes;2024-03-02

3. ARN: Analogical Reasoning on Narratives;Transactions of the Association for Computational Linguistics;2024

4. Understand the Dynamic World: An End-to-End Knowledge Informed Framework for Open Domain Entity State Tracking;Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval;2023-07-18

5. Fine-Tuning Large Enterprise Language Models via Ontological Reasoning;Rules and Reasoning;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3