Attention-Based Two-Dimensional Dynamic-Scale Graph Autoencoder for Batch Process Monitoring

Author:

Zhu Jinlin1ORCID,Gao Xingke2ORCID,Zhang Zheng3ORCID

Affiliation:

1. School of Food Science and Technology, Jiangnan University, Wuxi 214122, China

2. School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China

3. Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China

Abstract

Traditional two-dimensional dynamic fault detection methods describe nonlinear dynamics by constructing a two-dimensional sliding window in the batch and time directions. However, determining the shape of a two-dimensional sliding window for different phases can be challenging. Samples in the two-dimensional sliding windows are assigned equal importance before being utilized for feature engineering and statistical control. This will inevitably lead to redundancy in the input, complicating fault detection. This paper proposes a novel method named attention-based two-dimensional dynamic-scale graph autoencoder (2D-ADSGAE). Firstly, a new approach is introduced to construct a graph based on a predefined sliding window, taking into account the differences in importance and redundancy. Secondly, to address the training difficulties and adapt to the inherent heterogeneity typically present in the dynamics of a batch across both its time and batch directions, we devise a method to determine the shape of the sliding window using the Pearson correlation coefficient and a high-density gridding policy. The method is advantageous in determining the shape of the sliding windows at different phases, extracting nonlinear dynamics from batch process data, and reducing redundant information in the sliding windows. Two case studies demonstrate the superiority of 2D-ADSGAE.

Funder

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3