Fuzzy Logic Based Logical Query Answering on Knowledge Graphs

Author:

Chen Xuelu,Hu Ziniu,Sun Yizhou

Abstract

Answering complex First-Order Logical (FOL) queries on large-scale incomplete knowledge graphs (KGs) is an important yet challenging task. Recent advances embed logical queries and KG entities in the same space and conduct query answering via dense similarity search. However, most logical operators designed in previous studies do not satisfy the axiomatic system of classical logic, limiting their performance. Moreover, these logical operators are parameterized and thus require many complex FOL queries as training data, which are often arduous to collect or even inaccessible in most real-world KGs. We thus present FuzzQE, a fuzzy logic based logical query embedding framework for answering FOL queries over KGs. FuzzQE follows fuzzy logic to define logical operators in a principled and learning-free manner, where only entity and relation embeddings require learning. FuzzQE can further benefit from labeled complex logical queries for training. Extensive experiments on two benchmark datasets demonstrate that FuzzQE provides significantly better performance in answering FOL queries compared to state-of-the-art methods. In addition, FuzzQE trained with only KG link prediction can achieve comparable performance to those trained with extra complex query data.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Edge AI-driven neural network predictions for replica sync optimization;Applied Soft Computing;2024-11

2. Conditional Logical Message Passing Transformer for Complex Query Answering;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

3. Understanding Inter-Session Intentions via Complex Logical Reasoning;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

4. Privacy-Preserved Neural Graph Databases;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

5. Neural-Symbolic Methods for Knowledge Graph Reasoning: A Survey;ACM Transactions on Knowledge Discovery from Data;2024-08-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3