Neural-Symbolic Methods for Knowledge Graph Reasoning: A Survey

Author:

Cheng Kewei1ORCID,Ahmed Nesreen K.2ORCID,Rossi Ryan A.3ORCID,Willke Theodore4ORCID,Sun Yizhou1ORCID

Affiliation:

1. University of California, Los Angeles, California

2. Intel Labs, Santa Clara, California

3. Adobe Research, San Jose, California

4. Intel Labs, Hillsboro, Oregon

Abstract

Neural symbolic knowledge graph (KG) reasoning offers a promising approach that combines the expressive power of symbolic reasoning with the learning capabilities inherent in neural networks. This survey provides a comprehensive overview of advancements, techniques, and challenges in the field of neural symbolic KG reasoning. The survey introduces the fundamental concepts of KGs and symbolic logic, followed by an exploration of three significant KG reasoning tasks: knowledge graph completion, complex query answering, and logical rule learning. For each task, we thoroughly discuss three distinct categories of methods: pure symbolic methods, pure neural approaches, and the integration of neural networks and symbolic reasoning methods known as neural-symbolic. We carefully analyze and compare the strengths and limitations of each category of methods to provide a comprehensive understanding. By synthesizing recent research contributions and identifying open research directions, this survey aims to equip researchers and practitioners with a comprehensive understanding of the state-of-the-art in neural symbolic KG reasoning, fostering future advancements in this interdisciplinary domain.

Publisher

Association for Computing Machinery (ACM)

Reference139 articles.

1. E. Arakelyan, D. Daza, P. Minervini, and M. Cochez. Complex query answering with neural link predictors. arXiv preprint arXiv:2011.03459, 2020.

2. S. H. Bach, M. Broecheler, B. Huang, and L. Getoor. Hinge-loss markov random fields and probabilistic soft logic. 2017.

3. I. Balažević, C. Allen, and T. M. Hospedales. Hypernetwork knowledge graph embeddings. In International Conference on Artificial Neural Networks, pages 553–565. Springer, 2019.

4. I. Balažević, C. Allen, and T. M. Hospedales. Tucker: Tensor factorization for knowledge graph completion. arXiv preprint arXiv:1901.09590, 2019.

5. KG-Roar: Interactive Datalog-Based Reasoning on Virtual Knowledge Graphs

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3