Reliable Inlier Evaluation for Unsupervised Point Cloud Registration

Author:

Shen Yaqi,Hui Le,Jiang Haobo,Xie Jin,Yang Jian

Abstract

Unsupervised point cloud registration algorithm usually suffers from the unsatisfied registration precision in the partially overlapping problem due to the lack of effective inlier evaluation. In this paper, we propose a neighborhood consensus based reliable inlier evaluation method for robust unsupervised point cloud registration. It is expected to capture the discriminative geometric difference between the source neighborhood and the corresponding pseudo target neighborhood for effective inlier distinction. Specifically, our model consists of a matching map refinement module and an inlier evaluation module. In our matching map refinement module, we improve the point-wise matching map estimation by integrating the matching scores of neighbors into it. The aggregated neighborhood information potentially facilitates the discriminative map construction so that high-quality correspondences can be provided for generating the pseudo target point cloud. Based on the observation that the outlier has the significant structure-wise difference between its source neighborhood and corresponding pseudo target neighborhood while this difference for inlier is small, the inlier evaluation module exploits this difference to score the inlier confidence for each estimated correspondence. In particular, we construct an effective graph representation for capturing this geometric difference between the neighborhoods. Finally, with the learned correspondences and the corresponding inlier confidence, we use the weighted SVD algorithm for transformation estimation.Under the unsupervised setting, we exploit the Huber function based global alignment loss, the local neighborhood consensus loss and spatial consistency loss for model optimization. The experimental results on extensive datasets demonstrate that our unsupervised point cloud registration method can yield comparable performance.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing point cloud registration with transformer: cultural heritage protection of the Terracotta Warriors;Heritage Science;2024-08-29

2. DBDNet:Partial-to-partial point cloud registration with dual branches decoupling;Knowledge-Based Systems;2024-07

3. GTINet: Global Topology-Aware Interactions for Unsupervised Point Cloud Registration;IEEE Transactions on Circuits and Systems for Video Technology;2024-07

4. Leveraging Cycle-Consistent Anchor Points for Self-Supervised RGB-D Registration;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

5. HEGN: Hierarchical Equivariant Graph Neural Network for 9DoF Point Cloud Registration;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3