Enhancing point cloud registration with transformer: cultural heritage protection of the Terracotta Warriors

Author:

Wang Yong,Zhou Pengbo,Geng Guohua,An Li,Zhou Mingquan

Abstract

AbstractPoint cloud registration technology, by precisely aligning repair components with the original artifacts, can accurately record the geometric shape of cultural heritage objects and generate three-dimensional models, thereby providing reliable data support for the digital preservation, virtual exhibition, and restoration of cultural relics. However, traditional point cloud registration methods face challenges when dealing with cultural heritage data, including complex morphological and structural variations, sparsity and irregularity, and cross-dataset generalization. To address these challenges, this paper introduces an innovative method called Enhancing Point Cloud Registration with Transformer (EPCRT). Firstly, we utilize local geometric perception for positional encoding and combine it with a dynamic adjustment mechanism based on local density information and geometric angle encoding, enhancing the flexibility and adaptability of positional encoding to better characterize the complex local morphology and structural variations of artifacts. Additionally, we introduce a convolutional-Transformer hybrid module to facilitate interactive learning of artifact point cloud features, effectively achieving local–global feature fusion and enhancing detail capture capabilities, thus effectively handling the sparsity and irregularity of artifact point cloud data. We conduct extensive evaluations on the 3DMatch, ModelNet, KITTI, and MVP-RG datasets, and validate our method on the Terracotta Warriors cultural heritage dataset. The results demonstrate that our method has significant performance advantages in handling the complexity of morphological and structural variations, sparsity and irregularity of relic data, and cross-dataset generalization.

Funder

Key Laboratory Project of the Ministry of Culture and Tourism

Xi'an Science and Technology Plan Project

National key research and development plan

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Reference52 articles.

1. Liu S, Bin Mamat MJ. Application of 3D laser scanning technology for mapping and accuracy assessment of the point cloud model for the great achievement palace heritage building. Herit Sci. 2024;12(1):153.

2. Charatan D, Li SL, Tagliasacchi A, Sitzmann V. pixelsplat: 3d gaussian splats from image pairs for scalable generalizable 3d reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2024; p. 19457–19467.

3. Guo Y, Li Y, Ren D, Zhang X, Li J, Pu L. et al. LiDAR-Net: A Real-scanned 3D Point Cloud Dataset for Indoor Scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2024. p. 21989–21999.

4. Slimani K, Achard C, Tamadazte B. RoCNet++: triangle-based descriptor for accurate and robust point cloud registration. Pattern Recognit. 2024;147: 110108.

5. Kim J, Kim J, Paik S, Kim H. Point cloud registration considering safety nets during scaffold installation using sensor fusion and deep learning. Autom Constr. 2024;159: 105277.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3