A GNN-RNN Approach for Harnessing Geospatial and Temporal Information: Application to Crop Yield Prediction

Author:

Fan Joshua,Bai Junwen,Li Zhiyun,Ortiz-Bobea Ariel,Gomes Carla P.

Abstract

Climate change is posing new challenges to crop-related concerns, including food insecurity, supply stability, and economic planning. Accurately predicting crop yields is crucial for addressing these challenges. However, this prediction task is exceptionally complicated since crop yields depend on numerous factors such as weather, land surface, and soil quality, as well as their interactions. In recent years, machine learning models have been successfully applied in this domain. However, these models either restrict their tasks to a relatively small region, or only study over a single or few years, which makes them hard to generalize spatially and temporally. In this paper, we introduce a novel graph-based recurrent neural network for crop yield prediction, to incorporate both geographical and temporal knowledge in the model, and further boost predictive power. Our method is trained, validated, and tested on over 2000 counties from 41 states in the US mainland, covering years from 1981 to 2019. As far as we know, this is the first machine learning method that embeds geographical knowledge in crop yield prediction and predicts crop yields at the county level nationwide. We also laid a solid foundation by comparing our model on a nationwide scale with other well-known baseline methods, including linear models, tree-based models, and deep learning methods. Experiments show that our proposed method consistently outperforms the existing state-of-the-art methods on various metrics, validating the effectiveness of geospatial and temporal information.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DPDGAD: A Dual-Process Dynamic Graph-based Anomaly Detection for multivariate time series analysis in cyber-physical systems;Advanced Engineering Informatics;2024-08

2. Predicting Potato Crop Yield with Machine Learning and Deep Learning for Sustainable Agriculture;Potato Research;2024-07-13

3. Deep Hierarchical Temporal Data Fusion Improves Yield Estimation under Extreme Climate Stress;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

4. Neural Networks for Geospatial Data;Journal of the American Statistical Association;2024-06-24

5. A graph-based deep learning framework for field scale wheat yield estimation;International Journal of Applied Earth Observation and Geoinformation;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3