Abstract
With Artificial Intelligence on the rise, human interaction with autonomous agents becomes more frequent. Effective human-agent collaboration requires users to understand the agent's behavior, as failing to do so may cause reduced productivity, misuse or frustration. Agent strategy summarization methods are used to describe the strategy of an agent to users through demonstrations. A summary's objective is to maximize the user's understanding of the agent's aptitude by showcasing its behaviour in a selected set of world states. While shown to be useful, we show that current methods are limited when tasked with comparing between agents, as each summary is independently generated for a specific agent. In this paper, we propose a novel method for generating dependent and contrastive summaries that emphasize the differences between agent policies by identifying states in which the agents disagree on the best course of action. We conducted user studies to assess the usefulness of disagreement-based summaries for identifying superior agents and conveying agent differences. Results show disagreement-based summaries lead to improved user performance compared to summaries generated using HIGHLIGHTS, a strategy summarization algorithm which generates summaries for each agent independently.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献