“I Don’t Think So”: Summarizing Policy Disagreements for Agent Comparison

Author:

Amitai Yotam,Amir Ofra

Abstract

With Artificial Intelligence on the rise, human interaction with autonomous agents becomes more frequent. Effective human-agent collaboration requires users to understand the agent's behavior, as failing to do so may cause reduced productivity, misuse or frustration. Agent strategy summarization methods are used to describe the strategy of an agent to users through demonstrations. A summary's objective is to maximize the user's understanding of the agent's aptitude by showcasing its behaviour in a selected set of world states. While shown to be useful, we show that current methods are limited when tasked with comparing between agents, as each summary is independently generated for a specific agent. In this paper, we propose a novel method for generating dependent and contrastive summaries that emphasize the differences between agent policies by identifying states in which the agents disagree on the best course of action. We conducted user studies to assess the usefulness of disagreement-based summaries for identifying superior agents and conveying agent differences. Results show disagreement-based summaries lead to improved user performance compared to summaries generated using HIGHLIGHTS, a strategy summarization algorithm which generates summaries for each agent independently.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3