MAGIC: Multimodal relAtional Graph adversarIal inferenCe for Diverse and Unpaired Text-Based Image Captioning

Author:

Zhang Wenqiao,Shi Haochen,Guo Jiannan,Zhang Shengyu,Cai Qingpeng,Li Juncheng,Luo Sihui,Zhuang Yueting

Abstract

Text-based image captioning (TextCap) requires simultaneous comprehension of visual content and reading the text of images to generate a natural language description. Although a task can teach machines to understand the complex human environment further given that text is omnipresent in our daily surroundings, it poses additional challenges in normal captioning. A text-based image intuitively contains abundant and complex multimodal relational content, that is, image details can be described diversely from multiview rather than a single caption. Certainly, we can introduce additional paired training data to show the diversity of images' descriptions, this process is labor-intensive and time-consuming for TextCap pair annotations with extra texts. Based on the insight mentioned above, we investigate how to generate diverse captions that focus on different image parts using an unpaired training paradigm. We propose the Multimodal relAtional Graph adversarIal InferenCe (MAGIC) framework for diverse and unpaired TextCap. This framework can adaptively construct multiple multimodal relational graphs of images and model complex relationships among graphs to represent descriptive diversity. Moreover, a cascaded generative adversarial network is developed from modeled graphs to infer the unpaired caption generation in image–sentence feature alignment and linguistic coherence levels. We validate the effectiveness of MAGIC in generating diverse captions from different relational information items of an image. Experimental results show that MAGIC can generate very promising outcomes without using any image–caption training pairs.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring coherence from heterogeneous representations for OCR image captioning;Multimedia Systems;2024-09-06

2. Transformer with multi-level grid features and depth pooling for image captioning;Machine Vision and Applications;2024-08-20

3. CF‐Net: Cross fusion network for semantic segmentation;IET Image Processing;2024-08-08

4. PTAN: Principal Token-aware Adjacent Network for Compositional Temporal Grounding;Proceedings of the 2024 International Conference on Multimedia Retrieval;2024-05-30

5. Image Generation Using AI with Effective Audio Playback System;2024 5th International Conference for Emerging Technology (INCET);2024-05-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3