CF‐Net: Cross fusion network for semantic segmentation

Author:

Wang Baoyu1,Shen Aihong1,Dong Xu1,Cao Pingping1

Affiliation:

1. College of Basic Education and Research Criminal Investigation Police University of China Shenyang China

Abstract

AbstractSemantic segmentation is a fundamental computer vision task, and deep learning methods have been successfully applied to this field. However, target morphology continues to exhibit the incomplete prediction problem, which is attributable to the low feature utilisation and the insufficiency of spatial location information. This paper proposes a novel cross fusion network with unit attention mechanism (CF‐Net) for semantic segmentation. The two hallmarks of the framework are the usage of a multi‐scale fusion module and the unit attention mechanism. Multi‐scale fusion module can integrate multi‐branch outputs with different receptive fields, which obtain fine‐grained target details and visual contextual information. The cross fusion network is optimised with a unit attention mechanism to fuse intermediate features, which enables the acquisition of more accurate and effective spatial location information while maintaining consistency in feature space. The experimental results demonstrate that the proposed CF‐Net outperforms favourably comparable with other existing methods on the CamVid, Cityscapes, and PASCAL VOC 2012 databases, which also verifies the Effectiveness and reliability of our method.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3