Semantically Contrastive Learning for Low-Light Image Enhancement

Author:

Liang Dong,Li Ling,Wei Mingqiang,Yang Shuo,Zhang Liyan,Yang Wenhan,Du Yun,Zhou Huiyu

Abstract

Low-light image enhancement (LLE) remains challenging due to the unfavorable prevailing low-contrast and weak-visibility problems of single RGB images. In this paper, we respond to the intriguing learning-related question -- if leveraging both accessible unpaired over/underexposed images and high-level semantic guidance, can improve the performance of cutting-edge LLE models? Here, we propose an effective semantically contrastive learning paradigm for LLE (namely SCL-LLE). Beyond the existing LLE wisdom, it casts the image enhancement task as multi-task joint learning, where LLE is converted into three constraints of contrastive learning, semantic brightness consistency, and feature preservation for simultaneously ensuring the exposure, texture, and color consistency. SCL-LLE allows the LLE model to learn from unpaired positives (normal-light)/negatives (over/underexposed), and enables it to interact with the scene semantics to regularize the image enhancement network, yet the interaction of high-level semantic knowledge and the low-level signal prior is seldom investigated in previous methods. Training on readily available open data, extensive experiments demonstrate that our method surpasses the state-of-the-arts LLE models over six independent cross-scenes datasets. Moreover, SCL-LLE's potential to benefit the downstream semantic segmentation under extremely dark conditions is discussed. Source Code: https://github.com/LingLIx/SCL-LLE.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3