Author:
Goyal Bhawna,Dogra Ayush,Jalamneh Ammar,Chyophel Lepcha Dawa,Alkhayyat Ahmed,Singh Rajesh,Jyoti Saikia Manob
Abstract
AbstractImages captured in low-light environments are severely degraded due to insufficient light, which causes the performance decline of both commercial and consumer devices. One of the major challenges lies in how to balance the image enhancement properties of light intensity, detail presentation, and colour integrity in low-light enhancement tasks. This study presents a novel image enhancement framework using a detailed-based dictionary learning and camera response model (CRM). It combines dictionary learning with edge-aware filter-based detail enhancement. It assumes each small detail patch could be sparsely characterised in the over-complete detail dictionary that was learned from many training detail patches using iterative $${{\ell}}_{1}$$
ℓ
1
-norm minimization. Dictionary learning will effectively address several enhancement concerns in the progression of detail enhancement if we remove the visibility limit of training detail patches in the enhanced detail patches. We apply illumination estimation schemes to the selected CRM and the subsequent exposure ratio maps, which recover a novel enhanced detail layer and generate a high-quality output with detailed visibility when there is a training set of higher-quality images. We estimate the exposure ratio of each pixel using illumination estimation techniques. The selected camera response model adjusts each pixel to the desired exposure based on the computed exposure ratio map. Extensive experimental analysis shows an advantage of the proposed method that it can obtain enhanced results with acceptable distortions. The proposed research article can be generalised to address numerous other similar problems, such as image enhancement for remote sensing or underwater applications, medical imaging, and foggy or dusty conditions.
Publisher
Springer Science and Business Media LLC