Author:
Alsaedi Nasser,Burnap Pete,Rana Omer
Abstract
Microblogging sites, such as Twitter, have become increasingly popular in recent years for reporting details of real world events via the Web. Smartphone apps enable people to communicate with a global audience to express their opinion and commentate on ongoing situations - often while geographically proximal to the event. Due to the heterogeneity and scale of the data and the fact that some messages are more salient than others for the purposes of understanding any risk to human safety and managing any disruption caused by events, automatic summarization of event-related microblogs is a non-trivial and important problem. In this paper we tackle the task of automatic summarization of Twitter posts, and present three methods that produce summaries by selecting the most representative posts from real-world tweet-event clusters. To evaluate our approaches, we compare them to the state-of-the-art summarization systems and human generated summaries. Our results show that our proposed methods outperform all the other summarization systems for English and non-English corpora.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献