Template-based Abstractive Microblog Opinion Summarization

Author:

Bilal Iman Munire12,Wang Bo32,Tsakalidis Adam42,Nguyen Dong5,Procter Rob62,Liakata Maria782

Affiliation:

1. Department of Computer Science, University of Warwick, UK. iman.bilal@warwick.ac.uk

2. The Alan Turing Institute, London, UK

3. Center for Precision Psychiatry, Massachusetts General Hospital, USA. bwang29@mgh.harvard.edu

4. School of Electronic Engineering and Computer Science, Queen Mary University of London, UK atsakalidis@qmul.ac.uk

5. Department of Information and Computing Sciences, Utrecht University, The Netherlands. d.p.nguyen@uu.nl

6. Department of Computer Science, University of Warwick, UK. rob.procter@warwick.ac.uk

7. Department of Computer Science, University of Warwick, UK

8. School of Electronic Engineering and Computer Science, Queen Mary University of London, UK. mliakata@qmul.ac.uk

Abstract

AbstractWe introduce the task of microblog opinion summarization (MOS) and share a dataset of 3100 gold-standard opinion summaries to facilitate research in this domain. The dataset contains summaries of tweets spanning a 2-year period and covers more topics than any other public Twitter summarization dataset. Summaries are abstractive in nature and have been created by journalists skilled in summarizing news articles following a template separating factual information (main story) from author opinions. Our method differs from previous work on generating gold-standard summaries from social media, which usually involves selecting representative posts and thus favors extractive summarization models. To showcase the dataset’s utility and challenges, we benchmark a range of abstractive and extractive state-of-the-art summarization models and achieve good performance, with the former outperforming the latter. We also show that fine-tuning is necessary to improve performance and investigate the benefits of using different sample sizes.

Publisher

MIT Press

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Human-Computer Interaction,Communication

Reference71 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3