Empirical Analysis of Multi-Task Learning for Reducing Identity Bias in Toxic Comment Detection

Author:

Vaidya Ameya,Mai Feng,Ning Yue

Abstract

With the recent rise of toxicity in online conversations on social media platforms, using modern machine learning algorithms for toxic comment detection has become a central focus of many online applications. Researchers and companies have developed a variety of models to identify toxicity in online conversations, reviews, or comments with mixed successes. However, many existing approaches have learned to incorrectly associate non-toxic comments that have certain trigger-words (e.g. gay, lesbian, black, muslim) as a potential source of toxicity. In this paper, we evaluate several state-of-the-art models with the specific focus of reducing model bias towards these commonly-attacked identity groups. We propose a multi-task learning model with an attention layer that jointly learns to predict the toxicity of a comment as well as the identities present in the comments in order to reduce this bias. We then compare our model to an array of shallow and deep-learning models using metrics designed especially to test for unintended model bias within these identity groups.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3