Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Linguistics and Language,Education,Language and Linguistics
Reference63 articles.
1. Babakov, N., Logacheva, V., Kozlova, O., Semenov, N., & Panchenko, A. (2021). Detecting inappropriate messages on sensitive topics that could harm a company’s reputation. In Proceedings of the 8th Workshop on Balto–Slavic Natural Language Processing, pp. 26–36, Kiyv. Association for Computational Linguistics.
2. Banko, M., MacKeen, B., & Ray, L. (2020). A unified taxonomy of harmful content. In Proceedings of the Fourth Workshop on Online Abuse and Harms, pp. 125–137, Online. Association for Computational Linguistics.
3. Basile, V., Bosco, C., Fersini, E., Nozza, D., Patti, V., Pardo, F., Manuel, R., Rosso, P., & Sanguinetti, M. (2019). SemEval-2019 task 5: Multilingual detection of hate speech against immigrants and women in Twitter. In Proceedings of the 13th International Workshop on Semantic Evaluation, pp. 54–63, Minneapolis, Minnesota. Association for Computational Linguistics.
4. Bogoradnikova, D., Makhnytkina, O., Matveev, A., Zakharova, A., & Akulov, A. (2021). Multilingual sentiment analysis and toxicity detection for text messages in russian. In 2021 29th Conference of Open Innovations Association (FRUCT), pp 55–64.
5. Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors with subword information. Transactions of the Association for Computational Linguistics, 5, 135–146.