CosTriage: A Cost-Aware Triage Algorithm for Bug Reporting Systems

Author:

Park Jin-woo,Lee Mu-Woong,Kim Jinhan,Hwang Seung-won,Kim Sunghun

Abstract

"Who can fix this bug?" is an important question in bug triage to "accurately" assign developers to bug reports. To address this question, recent research treats it as a optimizing recommendation accuracy problem and proposes a solution that is essentially an instance of content-based recommendation (CBR). However, CBR is well-known to cause over-specialization, recommending only the types of bugs that each developer has solved before. This problem is critical in practice, as some experienced developers could be overloaded, and this would slow the bug fixing process. In this paper, we take two directions to address this problem: First,we reformulate the problem as an optimization problem of both accuracy and cost. Second, we adopt a content-boosted collaborative filtering (CBCF), combining an existing CBR with a collaborative filtering recommender (CF), which enhances the recommendationquality of either approach alone. However, unlike general recommendation scenarios, bug fix history is extremely sparse. Due to the nature of bug fixes, one bug is fixed by only one developer, which makes it challenging to pursue the above two directions. To address this challenge, we develop a topic-model to reduce the sparseness and enhance the quality of CBCF. Our experimental evaluation shows that our solution reduces the cost efficiently by 30% without seriously compromising accuracy.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PCG: A joint framework of graph collaborative filtering for bug triaging;Journal of Software: Evolution and Process;2024-04-17

2. ADPTriage: Approximate Dynamic Programming for Bug Triage;IEEE Transactions on Software Engineering;2023-10-01

3. Technological Evaluation and Software Bug Training using Genetic Algorithm and Time Convolution Neural Network (GA-TCN);2023 Second International Conference on Augmented Intelligence and Sustainable Systems (ICAISS);2023-08-23

4. A Survey on Bug Deduplication and Triage Methods from Multiple Points of View;Applied Sciences;2023-07-29

5. Graph collaborative filtering-based bug triaging;Journal of Systems and Software;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3