PCG: A joint framework of graph collaborative filtering for bug triaging

Author:

Dai Jie1ORCID,Li Qingshan1,Xie Shenglong1,Li Daizhen1,Chu Hua1

Affiliation:

1. Xidian University Xi'an China

Abstract

AbstractBug triaging is a vital process in software maintenance, involving assigning bug reports to developers in the issue tracking system. Current studies predominantly treat automatic bug triaging as a classification task, categorizing bug reports using developers as labels. However, this approach deviates from the essence of triaging, which is establishing bug–developer correlations. These correlations should be explicitly leveraged, offering a more comprehensive and promising paradigm. Our bug triaging model utilizes graph collaborative filtering (GCF), a method known for handling correlations. However, GCF encounters two challenges in bug triaging: data sparsity in bug fixing records and semantic deficiency in exploiting input data. To address them, we propose PCG, an innovative framework that integrates prototype augmentation and contrastive learning with GCF. With bug triaging modeled as predicting links on the bipartite graph of bug–developer correlations, we introduce prototype clustering‐based augmentation to mitigate data sparsity and devise a semantic contrastive learning task to overcome semantic deficiency. Extensive experiments against competitive baselines validate the superiority of PCG. This work may open new avenues for investigating correlations in bug triaging and related scenarios.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3