Fastened CROWN: Tightened Neural Network Robustness Certificates

Author:

Lyu Zhaoyang,Ko Ching-Yun,Kong Zhifeng,Wong Ngai,Lin Dahua,Daniel Luca

Abstract

The rapid growth of deep learning applications in real life is accompanied by severe safety concerns. To mitigate this uneasy phenomenon, much research has been done providing reliable evaluations of the fragility level in different deep neural networks. Apart from devising adversarial attacks, quantifiers that certify safeguarded regions have also been designed in the past five years. The summarizing work in (Salman et al. 2019) unifies a family of existing verifiers under a convex relaxation framework. We draw inspiration from such work and further demonstrate the optimality of deterministic CROWN (Zhang et al. 2018) solutions in a given linear programming problem under mild constraints. Given this theoretical result, the computationally expensive linear programming based method is shown to be unnecessary. We then propose an optimization-based approach FROWN (Fastened CROWN): a general algorithm to tighten robustness certificates for neural networks. Extensive experiments on various networks trained individually verify the effectiveness of FROWN in safeguarding larger robust regions.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Verifying the Generalization of Deep Learning to Out-of-Distribution Domains;Journal of Automated Reasoning;2024-08-03

2. Combining Measurement Uncertainties with the Probabilistic Robustness for Safety Evaluation of Robot Systems;2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2023-10-01

3. Expediting Neural Network Verification via Network Reduction;2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE);2023-09-11

4. A Tale of Two Approximations: Tightening Over-Approximation for DNN Robustness Verification via Under-Approximation;Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis;2023-07-12

5. Robustness quantification method for network intrusion detection models;Physical Communication;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3