Predicting Propositional Satisfiability via End-to-End Learning

Author:

Cameron Chris,Chen Rex,Hartford Jason,Leyton-Brown Kevin

Abstract

Strangely enough, it is possible to use machine learning models to predict the satisfiability status of hard SAT problems with accuracy considerably higher than random guessing. Existing methods have relied on extensive, manual feature engineering and computationally complex features (e.g., based on linear programming relaxations). We show for the first time that even better performance can be achieved by end-to-end learning methods — i.e., models that map directly from raw problem inputs to predictions and take only linear time to evaluate. Our work leverages deep network models which capture a key invariance exhibited by SAT problems: satisfiability status is unaffected by reordering variables and clauses. We showed that end-to-end learning with deep networks can outperform previous work on random 3-SAT problems at the solubility phase transition, where: (1) exactly 50% of problems are satisfiable; and (2) empirical runtimes of known solution methods scale exponentially with problem size (e.g., we achieved 84% prediction accuracy on 600-variable problems, which take hours to solve with state-of-the-art methods). We also showed that deep networks can generalize across problem sizes (e.g., a network trained only on 100-variable problems, which typically take about 10 ms to solve, achieved 81% accuracy on 600-variable problems).

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3