NeuroSynt: A Neuro-symbolic Portfolio Solver for Reactive Synthesis

Author:

Cosler MatthiasORCID,Hahn Christopher,Omar AyhamORCID,Schmitt FrederikORCID

Abstract

AbstractWe introduce , a neuro-symbolic portfolio solver framework for reactive synthesis. At the core of the solver lies a seamless integration of neural and symbolic approaches to solving the reactive synthesis problem. To ensure soundness, the neural engine is coupled with model checkers verifying the predictions of the underlying neural models. The open-source implementation of provides an integration framework for reactive synthesis in which new neural and state-of-the-art symbolic approaches can be seamlessly integrated. Extensive experiments demonstrate its efficacy in handling challenging specifications, enhancing the state-of-the-art reactive synthesis solvers, with  contributing novel solves in the current SYNTCOMP benchmarks.

Publisher

Springer Nature Switzerland

Reference64 articles.

1. Abraham, R.: Symbolic LTL reactive synthesis. Master’s thesis, University of Twente, Enschede (Jul 2021)

2. Alet, F., Lopez-Contreras, J., Koppel, J., Nye, M., Solar-Lezama, A., Lozano-Perez, T., Kaelbling, L., Tenenbaum, J.: A large-scale benchmark for few-shot program induction and synthesis. In: International Conference on Machine Learning. pp. 175–186. PMLR (2021)

3. Alon, Y., David, C.: Using graph neural networks for program termination. In: Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering. pp. 910–921. ESEC/FSE 2022, Association for Computing Machinery, New York, NY, USA (Nov 2022). https://doi.org/10.1145/3540250.3549095

4. Balunovic, M., Bielik, P., Vechev, M.T.: Learning to solve SMT formulas. In: Bengio, S., Wallach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada. pp. 10338–10349 (2018)

5. Bansal, K., Loos, S.M., Rabe, M.N., Szegedy, C., Wilcox, S.: HOList: An Environment for Machine Learning of Higher-Order Theorem Proving. In: Proceedings of the 36th International Conference on Machine Learning. pp. 454–463. PMLR (May 2019). https://doi.org/10.48550/arXiv.1904.03241

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3