1. Abraham, R.: Symbolic LTL reactive synthesis. Master’s thesis, University of Twente, Enschede (Jul 2021)
2. Alet, F., Lopez-Contreras, J., Koppel, J., Nye, M., Solar-Lezama, A., Lozano-Perez, T., Kaelbling, L., Tenenbaum, J.: A large-scale benchmark for few-shot program induction and synthesis. In: International Conference on Machine Learning. pp. 175–186. PMLR (2021)
3. Alon, Y., David, C.: Using graph neural networks for program termination. In: Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering. pp. 910–921. ESEC/FSE 2022, Association for Computing Machinery, New York, NY, USA (Nov 2022). https://doi.org/10.1145/3540250.3549095
4. Balunovic, M., Bielik, P., Vechev, M.T.: Learning to solve SMT formulas. In: Bengio, S., Wallach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada. pp. 10338–10349 (2018)
5. Bansal, K., Loos, S.M., Rabe, M.N., Szegedy, C., Wilcox, S.: HOList: An Environment for Machine Learning of Higher-Order Theorem Proving. In: Proceedings of the 36th International Conference on Machine Learning. pp. 454–463. PMLR (May 2019). https://doi.org/10.48550/arXiv.1904.03241