FD-GAN: Generative Adversarial Networks with Fusion-Discriminator for Single Image Dehazing

Author:

Dong Yu,Liu Yihao,Zhang He,Chen Shifeng,Qiao Yu

Abstract

Recently, convolutional neural networks (CNNs) have achieved great improvements in single image dehazing and attained much attention in research. Most existing learning-based dehazing methods are not fully end-to-end, which still follow the traditional dehazing procedure: first estimate the medium transmission and the atmospheric light, then recover the haze-free image based on the atmospheric scattering model. However, in practice, due to lack of priors and constraints, it is hard to precisely estimate these intermediate parameters. Inaccurate estimation further degrades the performance of dehazing, resulting in artifacts, color distortion and insufficient haze removal. To address this, we propose a fully end-to-end Generative Adversarial Networks with Fusion-discriminator (FD-GAN) for image dehazing. With the proposed Fusion-discriminator which takes frequency information as additional priors, our model can generator more natural and realistic dehazed images with less color distortion and fewer artifacts. Moreover, we synthesize a large-scale training dataset including various indoor and outdoor hazy images to boost the performance and we reveal that for learning-based dehazing methods, the performance is strictly influenced by the training data. Experiments have shown that our method reaches state-of-the-art performance on both public synthetic datasets and real-world images with more visually pleasing dehazed results.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 127 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3