Fast no-reference deep image dehazing

Author:

Qin Hongyi,Belyaev Alexander G.

Abstract

AbstractThis paper presents a deep learning method for image dehazing and clarification. The main advantages of the method are high computational speed and using unpaired image data for training. The method adapts the Zero-DCE approach (Li et al. in IEEE Trans Pattern Anal Mach Intell 44(8):4225–4238, 2021) for the image dehazing problem and uses high-order curves to adjust the dynamic range of images and achieve dehazing. Training the proposed dehazing neural network does not require paired hazy and clear datasets but instead utilizes a set of loss functions, assessing the quality of dehazed images to drive the training process. Experiments on a large number of real-world hazy images demonstrate that our proposed network effectively removes haze while preserving details and enhancing brightness. Furthermore, on an affordable GPU-equipped laptop, the processing speed can reach 1000 FPS for images with 2K resolution, making it highly suitable for real-time dehazing applications.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3