Solving Online Threat Screening Games using Constrained Action Space Reinforcement Learning

Author:

Shah Sanket,Arunesh Sinha,Pradeep Varakantham,Andrew Perrault,Milind Tambe

Abstract

Large-scale screening for potential threats with limited resources and capacity for screening is a problem of interest at airports, seaports, and other ports of entry. Adversaries can observe screening procedures and arrive at a time when there will be gaps in screening due to limited resource capacities. To capture this game between ports and adversaries, this problem has been previously represented as a Stackelberg game, referred to as a Threat Screening Game (TSG). Given the significant complexity associated with solving TSGs and uncertainty in arrivals of customers, existing work has assumed that screenees arrive and are allocated security resources at the beginning of the time-window. In practice, screenees such as airport passengers arrive in bursts correlated with flight time and are not bound by fixed time-windows. To address this, we propose an online threat screening model in which the screening strategy is determined adaptively as a passenger arrives while satisfying a hard bound on acceptable risk of not screening a threat. To solve the online problem, we first reformulate it as a Markov Decision Process (MDP) in which the hard bound on risk translates to a constraint on the action space and then solve the resultant MDP using Deep Reinforcement Learning (DRL). To this end, we provide a novel way to efficiently enforce linear inequality constraints on the action output in DRL. We show that our solution allows us to significantly reduce screenee wait time without compromising on the risk.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Benchmarking Actor-Critic Deep Reinforcement Learning Algorithms for Robotics Control With Action Constraints;IEEE Robotics and Automation Letters;2023-08

2. Enforcing Policy Feasibility Constraints through Differentiable Projection for Energy Optimization;Proceedings of the Twelfth ACM International Conference on Future Energy Systems;2021-06-22

3. Action Set Based Policy Optimization for Safe Power Grid Management;Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3