Top-Down RST Parsing Utilizing Granularity Levels in Documents

Author:

Kobayashi Naoki,Hirao Tsutomu,Kamigaito Hidetaka,Okumura Manabu,Nagata Masaaki

Abstract

Some downstream NLP tasks exploit discourse dependency trees converted from RST trees. To obtain better discourse dependency trees, we need to improve the accuracy of RST trees at the upper parts of the structures. Thus, we propose a novel neural top-down RST parsing method. Then, we exploit three levels of granularity in a document, paragraphs, sentences and Elementary Discourse Units (EDUs), to parse a document accurately and efficiently. The parsing is done in a top-down manner for each granularity level, by recursively splitting a larger text span into two smaller ones while predicting nuclearity and relation labels for the divided spans. The results on the RST-DT corpus show that our method achieved the state-of-the-art results, 87.0 unlabeled span score, 74.6 nuclearity labeled span score, and the comparable result with the state-of-the-art, 60.0 relation labeled span score. Furthermore, discourse dependency trees converted from our RST trees also achieved the state-of-the-art results, 64.9 unlabeled attachment score and 48.5 labeled attachment score.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Topic-Aware Two-Layer Context-Enhanced Model for Chinese Discourse Parsing;Communications in Computer and Information Science;2023-11-27

2. A Two-Stage Long Text Summarization Method Based on Discourse Structure;International Journal of Software Innovation;2023-09-29

3. Top-down Text-Level Discourse Rhetorical Structure Parsing with Bidirectional Representation Learning;Journal of Computer Science and Technology;2023-09

4. An Extractive Text Summarization Model Based on Rhetorical Structure Theory;2023 26th ACIS International Winter Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD-Winter);2023-07-05

5. Discourse Parsing on Multi-Granularity Interaction;2023 International Joint Conference on Neural Networks (IJCNN);2023-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3