A Two-Stage Long Text Summarization Method Based on Discourse Structure

Author:

Zhang Xin1,Wei Qiyi1,Song Qing1,Zhang Pengzhou1

Affiliation:

1. Communication University of China, China

Abstract

This paper proposes a two-stage automatic text summarization method based on discourse structure, aiming to improve the accuracy and coherence of the summary. In the extractive stage, a text encoder divides the long text into elementary discourse units (EDUs). Then a parse tree based on rhetorical structure theory is constructed for the whole discourse while annotating nuclearity information. The nuclearity terminal nodes are selected based on the summary length requirement, and the key EDU sequence is output. The authors use a pointer generator network and a coverage mechanism in the generation stage. The nuclearity information of EDUs is to update the word attention distribution in the pointer generator, which not only accurately reproduces the critical details of the text but also avoids self-repetition. Experiments on the standard text summarization dataset (CNN/DailyMail) show that the ROUGE score of the proposed two-stage model is better than that of the current best baseline model, and the summary achieves corresponding improvements in accuracy and coherence.

Publisher

IGI Global

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Computer Science Applications,Software

Reference46 articles.

1. Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural machine translation by jointly learning to align and translate. International Conference on Learning Representations (ICLR), San Diego, CA. https://arxiv.org/pdf/1409.0473

2. Baidu. (2023). The report of Ernie bot. https://aistudio.baidu.com/aistudio/projectdetail/5748979

3. Barzilay, R., & Elhadad, M. (1997). Using lexical chains for text summarization. Intelligent Scalable Text Summarization Workshop, Madrid, Spain. https://aclanthology.org/W97-0703.pdf

4. Automatic Text Summarization Based on Lexical Chains

5. Abstractive Sentence Summarization with Attentive Recurrent Neural Networks

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3