Author:
Yi Renjiao,Tan Ping,Lin Stephen
Abstract
We present an unsupervised approach for factorizing object appearance into highlight, shading, and albedo layers, trained by multi-view real images. To do so, we construct a multi-view dataset by collecting numerous customer product photos online, which exhibit large illumination variations that make them suitable for training of reflectance separation and can facilitate object-level decomposition. The main contribution of our approach is a proposed image representation based on local color distributions that allows training to be insensitive to the local misalignments of multi-view images. In addition, we present a new guidance cue for unsupervised training that exploits synergy between highlight separation and intrinsic image decomposition. Over a broad range of objects, our technique is shown to yield state-of-the-art results for both of these tasks.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献