Weakly Supervised Specular Highlight Removal Using Only Highlight Images

Author:

Zheng Yuanfeng1ORCID,Hu Guangwei1,Jiang Hao1ORCID,Wang Hao1,Wu Lihua2

Affiliation:

1. School of Electronic Information, Wuhan University, Wuhan 430072, China

2. Wuhan Second Ship Design and Research Institute, Wuhan 430064, China

Abstract

Specular highlight removal is a challenging task in the field of image enhancement, while it can significantly improve the quality of image in highlight regions. Recently, deep learning-based methods have been widely adopted in this task, demonstrating excellent performance by training on either massive paired data, wherein both the highlighted and highlight-free versions of the same image are available, or unpaired datasets where the one-to-one correspondence is inapplicable. However, it is difficult to obtain the corresponding highlight-free version of a highlight image, as the latter has already been produced under specific lighting conditions. In this paper, we propose a method for weakly supervised specular highlight removal that only requires highlight images. This method involves generating highlight-free images from highlight images with the guidance of masks estimated using non-negative matrix factorization (NMF). These highlight-free images are then fed consecutively into a series of modules derived from a Cycle Generative Adversarial Network (Cycle-GAN)-style network, namely the highlight generation, highlight removal, and reconstruction modules in sequential order. These modules are trained jointly, resulting in a highly effective highlight removal module during the verification. On the specular highlight image quadruples (SHIQ) and the LIME datasets, our method achieves an accuracy of 0.90 and a balance error rate (BER) of 8.6 on SHIQ, and an accuracy of 0.89 and a BER of 9.1 on LIME, outperforming existing methods and demonstrating its potential for improving image quality in various applications.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3