PsyNet: Self-Supervised Approach to Object Localization Using Point Symmetric Transformation

Author:

Baek Kyungjune,Lee Minhyun,Shim Hyunjung

Abstract

Existing co-localization techniques significantly lose performance over weakly or fully supervised methods in accuracy and inference time. In this paper, we overcome common drawbacks of co-localization techniques by utilizing self-supervised learning approach. The major technical contributions of the proposed method are two-fold. 1) We devise a new geometric transformation, namely point symmetric transformation and utilize its parameters as an artificial label for self-supervised learning. This new transformation can also play the role of region-drop based regularization. 2) We suggest a heat map extraction method for computing the heat map from the network trained by self-supervision, namely class-agnostic activation mapping. It is done by computing the spatial attention map. Based on extensive evaluations, we observe that the proposed method records new state-of-the-art performance in three fine-grained datasets for unsupervised object localization. Moreover, we show that the idea of the proposed method can be adopted in a modified manner to solve the weakly supervised object localization task. As a result, we outperform the current state-of-the-art technique in weakly supervised object localization by a significant gap.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3