Rethinking the Localization in Weakly Supervised Object Localization

Author:

Xu Rui1ORCID,Luo Yong2ORCID,Hu Han3ORCID,Du Bo2ORCID,Shen Jialie4ORCID,Wen Yonggang5ORCID

Affiliation:

1. Wuhan University, Wuhan, China

2. Wuhan University & Hubei Luojia Laboratory, Wuhan, China

3. Beijing Institute of Technology, Beijing, China

4. City, University of London, London, United Kingdom

5. Nanyang Technological University, Singapore, Singapore

Funder

National Key Research and Development Program of China

National Research Foundation Singapore and DSO National Laboratories under the AI Singapore Programme

National Natural Science Foundation of China

Special Fund of Hubei Luojia Laboratory

Fundamental Research Funds for the Central Universities

Publisher

ACM

Reference55 articles.

1. Kyungjune Baek Minhyun Lee and Hyunjung Shim. 2020. PsyNet: Self-Supervised Approach to Object Localization Using Point Symmetric Transformation. In AAAI. 10451--10459. Kyungjune Baek Minhyun Lee and Hyunjung Shim. 2020. PsyNet: Self-Supervised Approach to Object Localization Using Point Symmetric Transformation. In AAAI. 10451--10459.

2. David Berthelot Nicholas Carlini Ian J. Goodfellow Nicolas Papernot Avital Oliver and Colin Raffel. 2019. MixMatch: A Holistic Approach to Semi-Supervised Learning. In NIPS. 5050--5060. David Berthelot Nicholas Carlini Ian J. Goodfellow Nicolas Papernot Avital Oliver and Colin Raffel. 2019. MixMatch: A Holistic Approach to Semi-Supervised Learning. In NIPS. 5050--5060.

3. End-to-End Object Detection with Transformers;Carion Nicolas;ECCV,2020

4. Mickaël Chen Thierry Artières and Ludovic Denoyer. 2019. Unsupervised Object Segmentation by Redrawing. In NIPS. 12705--12716. Mickaël Chen Thierry Artières and Ludovic Denoyer. 2019. Unsupervised Object Segmentation by Redrawing. In NIPS. 12705--12716.

5. Minsu Cho Suha Kwak Cordelia Schmid and Jean Ponce. 2015. Unsupervised object discovery and localization in the wild: Part-based matching with bottom-up region proposals. In CVPR. 1201--1210. Minsu Cho Suha Kwak Cordelia Schmid and Jean Ponce. 2015. Unsupervised object discovery and localization in the wild: Part-based matching with bottom-up region proposals. In CVPR. 1201--1210.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3