Open Domain Event Text Generation

Author:

Fu Zihao,Bing Lidong,Lam Wai

Abstract

Text generation tasks aim at generating human-readable text from different kinds of data. Normally, the generated text only contains the information included in the data and its application is thus restricted to some limited scenarios. In this paper, we extend the task to an open domain event text generation scenario with an entity chain as its skeleton. Specifically, given an entity chain containing several related event entities, the model should retrieve from a trustworthy repository (e.g. Wikipedia) the detailed information of these entities and generate a description text based on the retrieved sentences. We build a new dataset called WikiEvent1 that provides 34K pairs of entity chain and its corresponding description sentences. To solve the problem, we propose a wiki augmented generator framework that contains an encoder, a retriever, and a decoder. The encoder encodes the entity chain into a hidden space while the decoder decodes from the hidden space and generates description text. The retriever retrieves relevant text from a trustworthy repository which provides more information for generation. To alleviate the overfitting problem, we propose a novel random drop component that randomly deletes words from the retrieved sentences making our model more robust for handling long input sentences. We apply the proposed model on the WikiEvent dataset and compare it with a few baselines. The experimental results show that our carefully-designed architecture does help generate better event text, and extensive analysis further uncovers the characteristics of the proposed task.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integrating LSTM and NLP techniques for essay generation;Intelligent Decision Technologies;2024-02-20

2. DiffuCom: A novel diffusion model for comment generation;Knowledge-Based Systems;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3