Integrating LSTM and NLP techniques for essay generation

Author:

Chauhan Aditi1,Kukkar Yashika1,Nagrath Preeti1,Gupta Kirti2,Hemanth Jude D.3

Affiliation:

1. Department of Computer Science and Engineering, Bharati Vidyapeeth’s College of Engineering, New Delhi, India

2. Department of Electronics and Communications Engineering, Bharati Vidyapeeth’s College of Engineering, New Delhi, India

3. Department of Electronics and Communications Engineering, Karunya University, Coimbatore, India

Abstract

This research explores the potential of Long Short-Term Memory (LSTM) and Natural Language Processing (NLP) for automated essay generation. The goal of the study is to create a model that can produce high-quality essays that are not only grammatically correct but also semantically meaningful and contextually relevant. The rise of NLP and Deep Learning has made it possible to generate text that is coherent and semantically sound. In this research, there is an advantage by leveraging the ability of LSTMs to capture long-term dependencies and context within the text, and combining it with NLP techniques, such as word embeddings, to process and encode textual data. The results of experiments show that the proposed model can effectively generate essays that are coherent, contextually relevant, and semantically meaningful. This is a significant advancement in the field of text generation and has potential applications in areas such as education, content creation, and language translation. In education, for example, the model could be used to generate essays for language proficiency tests or as a writing aid for students. In content creation, it could be used to generate articles, blog posts, and other written content. In language translation, the model could be used to generate essays in the target language that are semantically and contextually equivalent to the source language essay. The findings of this study contribute to the advancement of NLP and deep learning techniques in the area of text generation and open up new avenues for future research. Short after the proposed model was deployed, it was discovered that it outscored Multi-Topic Aware LSTM (MTA-LSTM), Topic-Attention LSTM (TAT-LSTM), and Topic-Averaged LSTM (TAV-LSTM) in human evaluation by 6.84 percent, 25.40 percent, and 34.94 percent, respectively. Furthermore, it enhanced automatic BLEU score evaluation scores by 11.68 percent, 26.23 percent, and 54.11 percent in MTA-LSTM, TAT-LSTM, and TAV- LSTM, respectively.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3