Author:
Wu Yongji,Lian Defu,Xu Yiheng,Wu Le,Chen Enhong
Abstract
The recent growth of social networking platforms also led to the emergence of social spammers, who overwhelm legitimate users with unwanted content. The existing social spammer detection methods can be characterized into two categories: features based ones and propagation-based ones. Features based methods mainly rely on matrix factorization using tweet text features, and regularization using social graphs is incorporated. However, these methods are fully supervised and can only utilize labeled part of social graphs, which fail to work in a real-world semi-supervised setting. The propagation-based methods primarily employ Markov Random Fields (MRFs) to capture human intuitions in user following relations, which cannot take advantages of rich text features. In this paper, we propose a novel social spammer detection model based on Graph Convolutional Networks (GCNs) that operate on directed social graphs by explicitly considering three types of neighbors. Furthermore, inspired by the propagation-based methods, we propose a MRF layer with refining effects to encapsulate these human insights in social relations, which can be formulated as a RNN through mean-field approximate inference, and stack on top of GCN layers to enable end-to-end training. We evaluate our proposed method on two real-world social network datasets, and the results demonstrate that our method outperforms the state-of-the-art approaches.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献