Author:
Chai Ziwei,Yang Yang,Dan Jiawang,Tian Sheng,Meng Changhua,Wang Weiqiang,Sun Yifei
Abstract
Anti-money laundering (AML) systems play a critical role in safeguarding global economy. As money laundering is considered as one of the top group crimes, there is a crucial need to discover money laundering sub-network behind a particular money laundering transaction for a robust AML system. However, existing rule-based methods for money laundering sub-network discovery is heavily based on domain knowledge and may lag behind the modus operandi of launderers. Therefore, in this work, we first address the money laundering sub-network discovery problem with a neural network based approach, and propose an AML framework AMAP equipped with an adaptive sub-network proposer. In particular, we design an adaptive sub-network proposer guided by a supervised contrastive loss to discriminate money laundering transactions from massive benign transactions. We conduct extensive experiments on real-word datasets in AliPay of Ant Group. The result demonstrates the effectiveness of our AMAP in both money laundering transaction detection and money laundering sub-network discovering. The learned framework which yields money laundering sub-network from massive transaction network leads to a more comprehensive risk coverage and a deeper insight to money laundering strategies.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献