Author:
Tong Meihan,Wang Shuai,Chen Xinyu,Bei Jinsong
Publisher
Springer Nature Singapore
Reference35 articles.
1. Ahmed, A.A.A.: Anti-money laundering recognition through the gradient boosting classifier. Acad. Accounting Fin. Stud. J. 25(5), 1–11 (2021)
2. Ai, L.: Rule-based but risk-oriented approach for combating money laundering in Chinese financial sectors. J. Money Laundering Control 15(2), 198–209 (2012)
3. Arslan, M., Guzel, M., Demirci, M., Ozdemir, S.: SMOTE and gaussian noise based sensor data augmentation. In: UBMK, pp. 1–5. IEEE (2019)
4. Bellomarini, L., Laurenza, E., Sallinger, E.: Rule-based anti-money laundering in financial intelligence units: experience and vision. RuleML+ RR 2644(Suppl.), 133–144 (2020)
5. Butgereit, L.: Anti money laundering: rule-based methods to identify funnel accounts. In: 2021 Conference on Information Communications Technology and Society (ICTAS), pp. 21–26 (2021)