Let the Data Choose: Flexible and Diverse Anchor Graph Fusion for Scalable Multi-View Clustering

Author:

Zhang Pei,Wang Siwei,Li Liang,Zhang Changwang,Liu Xinwang,Zhu En,Liu Zhe,Zhou Lu,Luo Lei

Abstract

In the past few years, numerous multi-view graph clustering algorithms have been proposed to enhance the clustering performance by exploring information from multiple views. Despite the superior performance, the high time and space expenditures limit their scalability. Accordingly, anchor graph learning has been introduced to alleviate the computational complexity. However, existing approaches can be further improved by the following considerations: (i) Existing anchor-based methods share the same number of anchors across views. This strategy violates the diversity and flexibility of multi-view data distribution. (ii) Searching for the optimal anchor number within hyper-parameters takes much extra tuning time, which makes existing methods impractical. (iii) How to flexibly fuse multi-view anchor graphs of diverse sizes has not been well explored in existing literature. To address the above issues, we propose a novel anchor-based method termed Flexible and Diverse Anchor Graph Fusion for Scalable Multi-view Clustering (FDAGF) in this paper. Instead of manually tuning optimal anchor with massive hyper-parameters, we propose to optimize the contribution weights of a group of pre-defined anchor numbers to avoid extra time expenditure among views. Most importantly, we propose a novel hybrid fusion strategy for multi-size anchor graphs with theoretical proof, which allows flexible and diverse anchor graph fusion. Then, an efficient linear optimization algorithm is proposed to solve the resultant problem. Comprehensive experimental results demonstrate the effectiveness and efficiency of our proposed framework. The source code is available at https://github.com/Jeaninezpp/FDAGF.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust Self-expression Learning with Adaptive Noise Perception;Pattern Recognition;2024-11

2. Robust tensor ring-based graph completion for incomplete multi-view clustering;Information Fusion;2024-11

3. Tensorized Unaligned Multi-view Clustering with Multi-scale Representation Learning;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

4. Scalable Multi-view Spectral Clustering Based on Spectral Perturbation Theory;ACM Turing Award Celebration Conference 2024;2024-07-05

5. The methods for improving large-scale multi-view clustering efficiency: a survey;Artificial Intelligence Review;2024-05-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3