The methods for improving large-scale multi-view clustering efficiency: a survey

Author:

Yang Zengbiao,Tan Yihua

Abstract

AbstractThe diversity and large scale of multi-view data have brought more significant challenges to conventional clustering technology. Recently, multi-view clustering has received widespread attention because it can better use different views’ consensus and complementary information to improve clustering performance. Simultaneously, many researchers have proposed various algorithms to reduce the computational complexity to accommodate the demands of large-scale multi-view clustering. However, the current reviews do not summarize from the perspective of reducing the computational complexity of large-scale multi-view clustering. Therefore, this paper outlines various high-frequency methods used in recent years to reduce the computational complexity of large-scale multi-view clustering, i.e. third-order tensor t-SVD, anchors-based graph construction, matrix blocking, and matrix factorization, and compares the corresponding algorithms based on several open datasets. Finally, the strengths and weaknesses of the current algorithm and the point of improvement are analyzed.

Funder

Technological Innovation Project of Hubei Province Under Grant

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3