Sharing Rides with Friends: A Coalition Formation Algorithm for Ridesharing

Author:

Bistaffa Filippo,Farinelli Alessandro,Ramchurn Sarvapali

Abstract

We consider the Social Ridesharing (SR) problem, where a set of commuters, connected through a social network, arrange one-time rides at short notice. In particular, we focus on the associated optimisation problem of forming cars to minimise the travel cost of the overall system modelling such problem as a graph constrained coalition formation (GCCF) problem, where the set of feasible coalitions is restricted by a graph (i.e., the social network). Moreover, we significantly extend the state of the art algorithm for GCCF, i.e., the CFSS algorithm, to solve our GCCF model of the SR problem. Our empirical evaluation uses a real dataset for both spatial (GeoLife) and social data (Twitter), to validate the applicability of our approach in a realistic application scenario. Empirical results show that our approach computes optimal solutions for systems of medium scale (up to 100 agents) providing significant cost reductions (up to -36.22%). Moreover, we can provide approximate solutions for very large systems (i.e., up to 2000 agents) and good quality guarantees (i.e., with an approximation ratio of 1.41 in the worst case) within minutes (i.e., 100 seconds).

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3