Incentivizing Users for Balancing Bike Sharing Systems

Author:

Singla Adish,Santoni Marco,Bartók Gábor,Mukerji Pratik,Meenen Moritz,Krause Andreas

Abstract

Bike sharing systems have been recently adopted by a growing number of cities as a new means of transportation offering citizens a flexible, fast and green alternative for mobility. Users can pick up or drop off the bicycles at a station of their choice without prior notice or time planning. This increased flexibility comes with the challenge of unpredictable and fluctuating demand as well as irregular flow patterns of the bikes. As a result, these systems can incur imbalance problems such as the unavailability of bikes or parking docks at stations. In this light, operators deploy fleets of vehicles which re-distribute the bikes in order to guarantee a desirable service level. Can we engage the users themselves to solve the imbalance problem in bike sharing systems? In this paper, we address this question and present a crowdsourcing mechanism that incentivizes the users in the bike repositioning process by providing them with alternate choices to pick or return bikes in exchange for monetary incentives. We design the complete architecture of the incentives system which employs optimal pricing policies using the approach of regret minimization in online learning. We investigate the incentive compatibility of our mechanism and extensively evaluate it through simulations based on data collected via a survey study. Finally, we deployed the proposed system through a smartphone app among users of a large scale bike sharing system operated by a public transport company, and we provide results from this experimental deployment. To our knowledge, this is the first dynamic incentives system for bikes re-distribution ever deployed in a real-world bike sharing system.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3