Emoticon Smoothed Language Models for Twitter Sentiment Analysis

Author:

Liu Kun-Lin,Li Wu-Jun,Guo Minyi

Abstract

Twitter sentiment analysis (TSA) has become a hot research topic in recent years. The goal of this task is to discover the attitude or opinion of the tweets, which is typically formulated as a machine learning based text classification problem. Some methods use manually labeled data to train fully supervised models, while others use some noisy labels, such as emoticons and hashtags, for model training. In general, we can only get a limited number of training data for the fully supervised models because it is very labor-intensive and time-consuming to manually label the tweets. As for the models with noisy labels, it is hard for them to achieve satisfactory performance due to the noise in the labels although it is easy to get a large amount of data for training. Hence, the best strategy is to utilize both manually labeled data and noisy labeled data for training. However, how to seamlessly integrate these two different kinds of data into the same learning framework is still a challenge. In this paper, we present a novel model, called emoticon smoothed language model (ESLAM), to handle this challenge. The basic idea is to train a language model based on the manually labeled data, and then use the noisy emoticon data for smoothing. Experiments on real data sets demonstrate that ESLAM can effectively integrate both kinds of data to outperform those methods using only one of them.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3