PARIS: A Polynomial-Time, Risk-Sensitive Scheduling Algorithm for Probabilistic Simple Temporal Networks with Uncertainty

Author:

Santana Pedro,Vaquero Tiago,Toledo Cláudio,Wang Andrew,Fang Cheng,Williams Brian

Abstract

Inspired by risk-sensitive, robust scheduling for planetary rovers under temporal uncertainty, this work introduces the Probabilistic Simple Temporal Network with Uncertainty (PSTNU), a temporal planning formalism that unifies the set-bounded and probabilistic temporal uncertainty models from the STNU and PSTN literature. By allowing any combination of these two types of uncertainty models, PSTNU's can more appropriately reflect the varying levels of knowledge that a mission operator might have regarding the stochastic duration models of different activities. We also introduce PARIS, a novel sound and provably polynomial-time algorithm for risk-sensitive strong scheduling of PSTNU's. Due to its fully linear problem encoding for typical temporal uncertainty models, PARIS is shown to outperform the current fastest algorithm for risk-sensitive strong PSTN scheduling by nearly four orders of magnitude in some instances of a popular probabilistic scheduling dataset, while results on a new PSTNU scheduling dataset indicate that PARIS is, indeed, amenable for deployment on resource-constrained hardware.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Safe Mission-Level Path Planning for Exploration of Lunar Shadowed Regions by a Solar-Powered Rover;2024 IEEE Aerospace Conference;2024-03-02

2. Contingency-Aware Task Assignment and Scheduling for Human-Robot Teams;2023 IEEE International Conference on Robotics and Automation (ICRA);2023-05-29

3. Multirobot Onsite Shared Analytics Information and Computing;IEEE Transactions on Control of Network Systems;2023-03

4. Human-Guided Goal Assignment to Effectively Manage Workload for a Smart Robotic Assistant;2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN);2022-08-29

5. Towards Temporally Uncertain Explainable AI Planning;Lecture Notes in Computer Science;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3