Online Risk-Bounded Motion Planning for Autonomous Vehicles in Dynamic Environments

Author:

Huang Xin,Hong Sungkweon,Hofmann Andreas,Williams Brian C.

Abstract

A crucial challenge to efficient and robust motion planning for autonomous vehicles is understanding the intentions of the surrounding agents. Ignoring the intentions of the other agents in dynamic environments can lead to risky or overconservative plans. In this work, we model the motion planning problem as a partially observable Markov decision process (POMDP) and propose an online system that combines an intent recognition algorithm and a POMDP solver to generate risk-bounded plans for the ego vehicle navigating with a number of dynamic agent vehicles. The intent recognition algorithm predicts the probabilistic hybrid motion states of each agent vehicle over a finite horizon using Bayesian filtering and a library of pre-learned maneuver motion models. We update the POMDP model with the intent recognition results in real time and solve it using a heuristic search algorithm which produces policies with upper-bound guarantees on the probability of near colliding with other dynamic agents. We demonstrate that our system is able to generate better motion plans in terms of efficiency and safety in a number of challenging environments including unprotected intersection left turns and lane changes as compared to the baseline methods.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Fully Polynomial Time Approximation Scheme for Constrained MDPs Under Local Transitions;2023 62nd IEEE Conference on Decision and Control (CDC);2023-12-13

2. Advances in Decision-Making for Autonomous Vehicles: A Review;2023 7th CAA International Conference on Vehicular Control and Intelligence (CVCI);2023-10-27

3. Interaction-Aware Decision-Making for Autonomous Vehicles;IEEE Transactions on Transportation Electrification;2023-09

4. Autonomous driving controllers with neuromorphic spiking neural networks;Frontiers in Neurorobotics;2023-08-11

5. Dual Formulation for Chance Constrained Stochastic Shortest Path with Application to Autonomous Vehicle Behavior Planning;2021 60th IEEE Conference on Decision and Control (CDC);2021-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3