Output Space Entropy Search Framework for Multi-Objective Bayesian Optimization

Author:

Belakaria Syrine,Deshwal Aryan,Doppa Janardhan Rao

Abstract

We consider the problem of black-box multi-objective optimization (MOO) using expensive function evaluations (also referred to as experiments), where the goal is to approximate the true Pareto set of solutions by minimizing the total resource cost of experiments. For example, in hardware design optimization, we need to find the designs that trade-off performance, energy, and area overhead using expensive computational simulations. The key challenge is to select the sequence of experiments to uncover high-quality solutions using minimal resources. In this paper, we propose a general framework for solving MOO problems based on the principle of output space entropy (OSE) search: select the experiment that maximizes the information gained per unit resource cost about the true Pareto front. We appropriately instantiate the principle of OSE search to derive efficient algorithms for the following four MOO problem settings: 1) The most basic single-fidelity setting, where experiments are expensive and accurate; 2) Handling black-box constraints which cannot be evaluated without performing experiments; 3) The discrete multi-fidelity setting, where experiments can vary in the amount of resources consumed and their evaluation accuracy; and 4) The continuous-fidelity setting, where continuous function approximations result in a huge space of experiments. Experiments on diverse synthetic and real-world benchmarks show that our OSE search based algorithms improve over state-of-the-art methods in terms of both computational-efficiency and accuracy of MOO solutions.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Feed formulation using multi-objective Bayesian optimization;Computers and Electronics in Agriculture;2024-09

2. Machine Learning Enabled Design and Optimization for 3D‐Printing of High‐Fidelity Presurgical Organ Models;Advanced Materials Technologies;2024-08-06

3. A surrogate-assisted a priori multiobjective evolutionary algorithm for constrained multiobjective optimization problems;Journal of Global Optimization;2024-05-29

4. Preference-Aware Constrained Multi-Objective Bayesian Optimization;Proceedings of the 7th Joint International Conference on Data Science & Management of Data (11th ACM IKDD CODS and 29th COMAD);2024-01-04

5. DMBF: Design Metrics Balancing Framework for Soft-Error-Tolerant Digital Circuits Through Bayesian Optimization;IEEE Transactions on Circuits and Systems I: Regular Papers;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3