Machine Learning Enabled Design and Optimization for 3D‐Printing of High‐Fidelity Presurgical Organ Models

Author:

Chen Eric S.1ORCID,Ahmadianshalchi Alaleh2ORCID,Sparks Sonja S.1ORCID,Chen Chuchu1ORCID,Deshwal Aryan2ORCID,Doppa Janardhan R.2,Qiu Kaiyan1ORCID

Affiliation:

1. School of Mechanical and Materials Engineering Washington State University Pullman Washington 99164 USA

2. School of Electrical Engineering and Computer Science Washington State University Pullman Washington 99164 USA

Abstract

AbstractThe development of a general‐purpose machine learning algorithm capable of quickly identifying optimal 3D‐printing settings can save manufacturing time and cost, reduce labor intensity, and improve the quality of 3D‐printed objects. Existing methods have limitations which focus on overall performance or one specific aspect of 3D‐printing quality. Here, for addressing the limitations, a multi‐objective Bayesian Optimization (BO) approach which uses a general‐purpose algorithm to optimize the black‐box functions is demonstrated and identifies the optimal input parameters of direct ink writing for 3D‐printing different presurgical organ models with intricate geometry. The BO approach enhances the 3D‐printing efficiency to achieve the best possible printed object quality while simultaneously addressing the inherent trade‐offs from the process of pursuing ideal outcomes relevant to requirements from practitioners. The BO approach also enables us to effectively explore 3D‐printing inputs inclusive of layer height, nozzle travel speed, and dispensing pressure, as well as visualize the trade‐offs between each set of 3D‐printing inputs in terms of the output objectives which consist of time, porosity, and geometry precisions through the Pareto front.

Funder

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3