Author:
Cohen William,Yang Fan,Rivard Mazaitis Kathryn
Abstract
We present an implementation of a probabilistic first-order logic called TensorLog, in which classes of logical queries are compiled into differentiable functions in a neural-network infrastructure such as Tensorflow or Theano. This leads to a close integration of probabilistic logical reasoning with deep-learning infrastructure: in particular, it enables high-performance deep learning frameworks to be used for tuning the parameters of a probabilistic logic. The integration with these frameworks enables use of GPU-based parallel processors for inference and learning, making TensorLog the first highly parallellizable probabilistic logic. Experimental results show that TensorLog scales to problems involving hundreds of thousands of knowledge-base triples and tens of thousands of examples.
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献