Foundations of reasoning with uncertainty via real-valued logics

Author:

Fagin Ronald1ORCID,Riegel Ryan2ORCID,Gray Alexander3

Affiliation:

1. International Business Machines (IBM) Almaden Research Center, IBM Research, San Jose, CA 95120

2. International Business Machines (IBM) Thomas J. Watson Research Center, IBM Research, Yorktown Heights, NY 10598

3. Centaur AI Institute, Lincoln, CA 95648

Abstract

Interest in logics with some notion of real-valued truths has existed since at least Boole and has been increasing in AI due to the emergence of neuro-symbolic approaches, though often their logical inference capabilities are characterized only qualitatively. We provide foundations for establishing the correctness and power of such systems. We introduce a rich class of multidimensional sentences, with a sound and complete axiomatization that can be parameterized to cover many real-valued logics, including all the common fuzzy logics, and extend these to weighted versions, and to the case where the truth values are probabilities. Our multidimensional sentences form a very rich class. Each of our multidimensional sentences describes a set of possible truth values for a collection of formulas of the real-valued logic, including which combinations of truth values are possible. Our completeness result is strong, in the sense that it allows us to derive exactly what information can be inferred about the combinations of truth values of a collection of formulas given information about the combinations of truth values of a finite number of other collections of formulas. We give a decision procedure based on linear programming for deciding, for certain real-valued logics and under certain natural assumptions, whether a set of our sentences logically implies another of our sentences. The generality of this work, compared to many previous works on special cases, may provide insights for both existing and new real-valued logics whose inference properties have never been characterized. This work may also provide insights into the reasoning capabilities of deep learning models.

Publisher

Proceedings of the National Academy of Sciences

Reference38 articles.

1. G. Boole, An Investigation of the Laws of Thought: On Which Are Founded the Mathematical Theories of Logic and Probabilities (Walton and Maberly, 1854), vol. 2.

2. Fuzzy logic and approximate reasoning

3. A formal theory of intermediate quantifiers

4. G. Epstein, Multiple-Valued Logic Design: An Introduction (CRC Press, 1993).

5. Optimal aggregation algorithms for middleware

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3